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Abstract—Passive linear bilateral microwave devices principally
include guided wave transmission structures, their junctions, and
interconnections, as well as such complex devices as resonant cavi-
ties and planar networks. The computational methods for analyzing
the behavior of this class of structures and for characterizing them
for purposes of network design are briefly reviewed.

I. INTRODUCTION

PASSIVE microwave device may be defined as a

closed box filled with a heterogeneous combination
of passive material media, connected to the rest of the
universe through a finite number of clearly definable
ports. This definition contains within it the classical and
general definition of a waveguide junction, if all the ports
are of the closed waveguide type. The object of the present
paper is to review recent literature in the area of numerical
modeling of passive microwave devieces and to provide a
selected bibliography of contributions to this field.

It may be noted that the literature available on passive
microwave devices is extremely extensive and even when
the discussion is restricted to the computational methods
used in modeling passive devices, an enormous amount of
material remains. To keep the subject matter within
reasonable bounds, we have endeavored to choose a
representative cross section of the available literature; no
attempt has been made to create an exhaustive bib-
liography. Indeed, it is doubtful whether a complete
bibliography for so broad a field would be useful. Our
~ “raw” bibliography compiled while writing this paper

included over 1000 items. A rough estimate of the total
available literature may be obtained by checking the raw
bibliography against citations in recently published
papers. I'rom such internal evidence, it would appear that
the world literature on passive device modeling presently
comprises about 10 000 papers, of which about half may be
termed ‘“‘recent.” Since our interest in this paper is pri-
marily expository rather than historical, we shall con-
centrate heavily on recent papers in the field, with only an
occasional reference to work done a decade or more ago.
Furthermore, we recognize that the distinction between
numerical and analytic methods is sometimes blurred, and
will use as a guide in the survey the criterion that a
numerical method leads to an algorithm for the solution of
a problem, whereas an analytic method yields an expres-
sion of more or less closed form.
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In general, a microwave network may be regarded as a
collection of active and passive devices—that is to say,
finite-sized noninteracting blocks or boxes—whose ports
are interconnected in some prescribed fashion by wave
guides.! These may be standard hollow waveguides,
transmission lines, dielectric surface guides, or any other
wave-guiding structures. For present purposes, microwave
network analysis may be regarded as a process in which
each device and each section of wave guide is mathe-
matically modeled by a matrix, the individual matrices
being combined in a manner corresponding to the inter-
connection of guides and devices so as to arrive at a com-
posite mathematical model for the entire network. In the
following, we shall restrict our attention to interconnec-
tions of passive bilateral linear devices: there is a certain
amount of unity in the mathematics used for their treat-
ment, while devices including anisotropic or nonlinear
materials (e.g., plasmas and ferrites) often require
specialized methods.

The modeling procedure is a two-part process. First,
the fields inside the device are approximated by
linear combinations of functions chosen in advance;
subsequently, the expansion coefficients of these approxi-
mating functions are related to port parameters. Once the
approximating functions have been chosen, all matrix
representations based on the same approximating funec-
tions can be obtained from each other by simple matrix
transformations. For example, impedance matrices may be
transformed into admittance matrices by inversion, or into
the ABCD parameters of a two-port by a rearrangement of
matrix entries. Which choice of representation is best is a
decision for the microwave network analysis program
designer: for modeling purposes, it is the choice of ap-
proximating functions that matters.

To illustrate the process by a simple physical example,
consider the semi-infinite coaxial line terminated in an
open circuit, shown in Fig. 1(a). It will be assumed that
the operating frequency is low enough to allow only the
TEM wave to propagate. A simple equivalent circuit,
valid at low frequencies, consists of a semi-infinite length
of “perfect’” TEM line, with a terminating capacitor to
account for the extra energy stored in the end region shown
in Fig. 1(b). The essence of the passive device modeling
problem is to find the correct value for this capacitor. It
should be noted that this value and the length to be
assigned to the transmission-line section both depend on

1 We distinguish in this paper between wave guides (longitudinally
uniform structures capable of guiding waves) and waveguides (uni-
form closed metallic pipes).
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(e)

Fig. 1. (a) Semi-infinite coaxial line terminated in open circuit. (b)
Low-frequency model, comprising idealized TEM line and lumped
capacitor. (¢) Boundary value problem for determining end
capacitance.

where the imaginary division between transmission line
and passive device (the so-called terminal plane) is made.
It will be readily appreciated that the terminal plane
location is entirely arbitrary, since the plane is wholly
imaginary.

The equivalent network model of Fig. 1(b) postulates
in effect that a pure unmodified TEM wave pair (one
incident and one reflected wave) exists in the semi-
infinite line, up to the terminal plane; one imagines that
this wave pair suddenly disappears at the terminal plane
and does not exist on its right-hand side. To the right of
the terminal plane, a field is supposed to exist that satisfies
Laplace’s equation, subject to the given boundary condi-
tions on all metal surfaces and to appropriate continuity
conditions on the terminal plane. As a first approximation,
one may imagine that the equipotential lines in this
problem are essentially normal to the terminal plane
everywhere. In that case, it suffices to solve the boundary
value problem shown in Fig. 1(c¢) to find the fields in the
end region beyond the terminal plane. The capacitance
value may then be calculated by evaluating the stored
energy in the field.

Consider next the modified open-circuited coaxial line
shown in Fig. 2(a). This problem is exactly similar to the
previous one, except that the end region has been enlarged,
forming a resonant cavity of significant size. Since a
resonant cavity has an infinite number of resonant fre-
quencies, the correct equivalent circuit, Fig. 2(b), should
theoretically include an infinite number of branches. Of
course in practice only a few modes of the cavity will be
considered so that only a few resonant branches occur in
the network model. Indeed, it should be noted that the
model of Fig. 1(b) represents the low-frequency asymp-
totic behavior of the model of Fig. 2(b).

At relatively high frequencies, modes other than TEM
may propagate along the coaxial line. These modes are, of
course, linearly independent throughout the length of
the coaxial guide, and may therefore be modeled by
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Fig. 2. (a) Coaxial line terminated in resonant cavity. (b) Network
model valid at low frequencies. (¢) Multiport model, valid at fre-
quencies where multimode propagation can take place.

separate wave guides connected at the terminal plane.

If high-order modes in addition to the TEM mode
propagate, the line-and-cavity problem of Fig. 2(a)
requires the model shown in Fig. 2(¢). The number of
ports to be assigned to the network model clearly depends
on the number of propagating modes that each transmis-
sion structure can support; one network port must be
provided for each possible mode. For this reason, any
model will remain valid only over a restricted frequency
range.

The detailed mathematical techniques used in the
modeling of passive devices vary enormously, yet the
fundamental steps remain virtually the same. The first
task of the analyst is to identify the possible propagating
modes on each of the transmission structures at the fre-
quency of interest. Secondly, terminal planes must be
specified so as to define unambiguously which region of
space will be considered to form the device to be modeled.
Third, a choice must be made as to the description of the
ports. Since a pair of waves will exist for each port, alterna-
tive representations are in terms of incident and reflected
wave amplitudes or in terms of port voltage and current.
The fourth step involves providing a description for all
possible interior field configurations at the operating fre-
quency; this is frequently done as an expansion in the
normal modes of the device to be modeled, though often
other representations are used. Fifth, the usual continuity
requirements of electromagnetic theory are imposed at the
ports so as to obtain relationships between the internal
field and the amplitudes of the externally propagating
incident and reflected waves.

In the following, the most common varieties of trans-
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" mission structure are first considered, and methods for
identifying their modal structure briefly reviewed: the
TEM transmission line, the hollow waveguide, and micro-
strip. Thereafter, methods applicable to passive devices
with one or more ports are examined.

II. Mopers or TEM Lines

TEM lines are by definition those wave guides in which
only a single mode, the TEM mode, is assumed to propa-
gate. This mode is completely described by a scalar poten-
tial ¢ where

¥ = ¢(z,y) cos (wi — kz) (1)

the velocity of propagation being always equal to the
velocity of light in the dielectric medium of the TEM line.
The funetion ¢ in turn satisfied Laplace’s equation

Vi (z,y) =0 (2)

in the plane transverse to the direction of propagation, and
subject to the boundary conditions that ¢ must have
exactly the same value everywhere on the surface of any
single conductor forming part of the line.

The above two-dimensional boundary value problem,
involving Laplace’s equation with Dirichlet boundary
conditions, is commonly used by numerical analysts as a
model problem in the development of numerical methods.
It is among the easiest of continuum problems to solve
numerically, provided that the region of solution is finite;
that is to say, provided that the TEM line is topologically
of the coaxial type, in which one conductor forms an en-
closing shield around the other. The classical method of
finite differences is well suited to this problem and has
been used, for example, by Metcalf [1] to determine the
potential distribution and the characteristic impedance of
lines composed of square coaxial conductors. The essence
of the finite-difference method is to replace the continuum
equation (2) by a large set of discrete algebraic equations
that are solved iteratively. This class of techniques may be
regarded as well established, and for details of implementa-
tion the reader is referred to Wexler’s review paper [2]
and to the book by Wachspress [3].

An alternative method that has proved popular, and
of which many variants exist, requires the region in which
Laplace’s equation is to be solved to be divided into sub-
regions, in each of which the equation may be solved by
separation of variables. For example, Fig. 3 shows the
cross-sectional shape of a curious coaxial line, which may
be subdivided, as indicated, into an annular region and a
rectangular region. In the rectangular region, solutions of
Laplace’s equation may be written as a double Fourier’s
series, whose coefficients are as yet unknown; in the
annular region, a double series in Bessel functions and
trigonometric functions serves the same purpose. Along the
imaginary dividing line between subregions, the usual
continuity equations of electromagnetics must hold.
Hence the two infinite series expansions must have coeffi-
cients such that: a) Laplace’s equation is satisfied in each
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Fig. 3. Coaxial transmission-line problem permitting approximate
solution by separation of variables in individual subregions,
followed by imposition of continuity requirements along sub-
region boundaries.

subregion; and b) all fields are continuous across the
dividing lines. These relationships between coefficients
may be written in the form of infinite matrix equations,
which may be solved numerically if each series is truncated
to a finite number of terms. An early variant of this
method was termed “orthonormal block analysis” by
Cruzan and Garver [4]; numerous other versions have
been published since then. Since it is obviously impossible
to satisfy the continuity conditions everywhere along the
dividing lines with only a finite number of adjustable
coefficients, a variety of choices exists: one may require
continuity at a selected number of points, or in a least
squares sense at all points of the dividing line, or in various
other ways, each of which effectively yields another dis-
tinet version of the general method.

The methods described above are strictly applicable to
closed (i.e., coaxial) TEM lines. In the case of open lines,
as for example the classical two-wire pair, considerable
difficulties are encountered because it is not easy to model
the boundary condition at infinity. There exists, of course,
the possibility of introducing a purely artificial boundary
at a location judged on physical grounds to be sufficiently
far away. However, this approach leaves much to be
desired both in terms of computational efficiency and in the
amount of physical insight and judgment that must be
used with the computer programs. In recent years, there-
fore, efforts have been made to develop methods that
model the infinite exterior region more accurately. For
example, Fig. 4 shows an open-wire pair composed of
square wires; the region in which Laplace’s equation
must be satisfied is the entire z—y plane, except for the
interiors of the wires themselves. An early method of
solving this problem, termed ‘‘boundary relaxation’ by
Cermak and Silvester [5], proceeds to encase the wires
in two nested window frames, as indicated in Fig. 4(a).
If the values of potential everywhere on the outer frame A
are assumed, there remains a straightforward boundary
value problem that may be solved by finite-difference
methods or by any of the other methods just discussed.
Such a solution will yield, among other data, potential
values on the inner window frame B. If potential values
on this frame are known, however, potential values any-
where in the region exterior to B may be computed. This
exterior solution will include within it new potential
values on the frame A. It can be shown theoretically and
has been demonstrated computationally that the potential
values thus obtained on frame A are nearer the correct
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Fig. 4. (a) Two-frame formulation of open-boundaried problems.
(b) Single frame may be used in alternative formulation.

values than the initial estimate; that is to say, the pro-
cedure described may be regarded as one step of a con-
vergent iterative process. The end result of the process is a
solution that looks as if the problem had been solved for
the whole infinite plane, but only the portion enclosed
within the window frame A was available for examination.

A second possibility, closely related to boundary relaxa-
tion, is to employ only a single frame, as shown in Fig.
4(b). The potential values anywhere in the exterior region,
mcluding on the wmdow frame ztself, satisfy the 1ntegra1
equatlon

ar (3)

9¢
sy = fa S
P

where G is the Green’s function for the Laplacian operator

and the integral extends over the frame contour. This.

integral equation may be approxunated by a matrix equa-
tion. Similarly, the interior problem of Laplace’s equatlon
within the window frame of Fig. 4(b) may be approxi-
mated by a matrix equation. In this way, two matrix
equations are set up that share the potential values along
the window frame as unknowns. Simultaneous solution of
both equations then yields potential values within and on
the window frame. This method was proposed by Silvester
and Hsieh [6], the interior discretization being accom-
phshed by the ﬁnlte-element method. Careful attention to
the method of diseretization is required in this technique,
since the integral operator in (3) is invariably singular. A
related method, employing two window frames as'in Fig.
4(a), has recently been employed by McDonald and
Wexler [7]; 1ntegrat10n through the singularity is avoided
in this way.

Once the potential distribution in a TEM line has been
found, the characteristic impedance may be determined
by finding the capacitance per unit length of line. A
straightforward method for doing this is to find the normal
derivative of the potential at the conductor surfaces (this
is proportional to the charge densfcy) and then to 1ntegrate
over the conductors to find the total charge for the given
potential difference. However, since numerical differentia~
tion is very unstable, in most numerical methods of solu-
tion it is easier and more accurate to find the stored energy
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in the field and then to calculate the capacitance from the
stored energy. A variationally stationary capacitance
formulation suitable for use with finite-element methods
based on energy has recently been given by Daly and
Helps [8].

ITI. Horr.ow WAVEGUIDES

A hollow waveguide filled with homogeneous isotropic
dielectric is capable of propagating two distinct sets of
modes, TE and TM, and there exist infinitely many
modes of each kind. The numerical problem of determining
the possible propagating ‘modes is therefore somewhat
more complicated than the solution of a TEM line, where
only one mode is possible. It can be shown that both types
of modes satisfy the homogeneous Helmholtz equation
(VP4 k)¢ =0 (4)
subject to homogeneous Dirichlet or Neumann boundary
conditions in the TM and TE cases, respectively. Equa-
tion * (4) represents a classical eigenvalue problem,
possessing inﬁnitely many solutions corrésponding to an
infinity of eigenvalues k2.

‘TFinite-difference methods have been applied to the
homogeneous waveguide problem. Davies and Muilwyk
[9] reported what was probably the first general-purpose
computer program using this method, although the tech-
nique itself had been known and extensively discussed
much earlier. As in almost all numerical methods, with the
finite-difference method the continuum equation (4)
is replaced by the matrix equation

A+ B2 =0 (5)
constructed in such a way that the eigenvalues and eigen-
vectors of the matrix problem give approximations to the
eigenvalues and eigenvectors of the continuum problem.
In this case, the matrix A has a particularly simple strue-
ture, while the matrix B is the identity matrix. However,
the matrix order is typically several thousand, so that
explicit methods are not very useful and iterative tech-
niques are normally resorted to. An unfortunate difficulty
with these iterative techniques is that regardless of the
initial iterate, the iteration always converges to the lowest
order propagating mode, and that high-order modes can-
not be found. Matrix deflation (also called mode subtrac-
tion), which permits finding highest modes in general
matrix problems, cannct be used with the sparse matrices
encountered in finite-difference approximations without
considerable difficulty. To ecircumvent this problem,
Beaubien and Wexler [107] proposed an ingenious scheme.
Once the dominant solution to (4) has been found, a new
problem is constructed [11] in which the Laplacian
operator in (4) is replaced by another operator possessing
the same eigenvectors, but with the first eigenvalue
removed. An iterative solution will then automatically
converge to the second modé of (4). This process may be
continued to determine as many propagating modes as
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desired, with the computing cost very roughly propor-
tional to the number of modes calculated.

The method of subregions referred to above in connec-
tion with TEM lines, sometimes also called the mode
matching method, has also found considerable application
in the analysis of wave guides [127, [13]. The essence of
the technique is very similar to that pursued in the solution
of TEM line problems, except of course that a matrix
eigenvalue problem results instead in an indeterminate
set of simultaneous equations.

The direct Rayleigh—Ritz approximation method has
been known for a long time, and it is surprising that it was
not applied as a general procedure to waveguide problems
until relatively recently. Its use is stralghtforward for the
determination of TE modes [14], where the boundary
conditions of the Rayleigh-Ritz functional are natural.
Determination of the TM modes, however, for which the
usual electromagnetic boundary conditions are principal
and must be imposed upon the approximating functions
from the start, are more difficult. For a large variety of
waveguide shapes, however, construction of such funec-
tions is possible, making the Rayleigh~Ritz method quite
useful. Approximating functions are typically chosen to be
either polynomials in Cartesian coordinates or in polar
coordinates [ 157; in the former case, some difficulty may be
encountered with reentrant cross-sections, while the second
choice is best if the cross sections are star shaped with
réspect to a point.

For most elliptic boundary value problems, an equiva-
lent formulation in terms of a Fredholm integral equation
of the second kind may be given, and the Helmholtz
equation (4) is no exception. The possibility has certain
attractions, since a two-dimensional boundary value
problem is thus replaced by an integral equation involving
a contour integral, which is computationally very economi-
cal. The disadvantage of this approach is that the linear
eigenvalues appear in some complicated functional form.
Two distinet formulations have been given by Spielman
and Harrington [167] and by Ng and Bates [17]. In both
cases, search techniques must be resorted to in order to
determine the eigenvalues, although the matrix sizes are
relatively small. As in any discrete search, there invariably
lurks the danger of some eigenvalues being missed, par-
ticularly if they are nearly degenerate.

In the last few years, the finite-element method has
gained considerable ground in the solution of boundary
value problems and is at the present time preeminent in
the solution of waveguide problems. The method may be
loosely regarded as a combination of the method of sub-
regions and the Ritz minimization method; it differs,
however, fundamentally from the method of subregions
in that the approximating functions employed are required
to be continuous across subregion boundaries, but not
necessarily to satisfy the differential equations exactly
anywhere. The advantage of the method is that it com-
bines the high accuracy and short computing times of the
Rayleigh—Ritz method with the ﬂexibility and ease of
usage of the finite-difference method.

The first general—purpose finite-element computer
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program was described by Silvester [187, who used tri-
angular elements and polynomial approximating functions
of up to the fourth order. A much more extensive and
flexible program, applicable to TEM lines as well as wave-
guides, and employing approximations up to sixth order
was subsequently published by Konrad and Silvester [197].
These computer programs produce, with a minimum of
data preparation, the solutions of arbitrary polygonal
waveguides, generally with accuracies of better than 0.1
percent for the dominant and first few higher order wave
numbers.

The solution of some specific waveguide problems with
the finite-element method has been published by Lagasse
and Van Bladel [20]. Furthermore, Daly [21] has
recently described quasi-triangular elements with curved
sides, which share many of the desirable properties of
ordinary triangular elements. Isoparametric elements,
long used in many areas of continuum analysis, have
recently made an appearance in electromagnetics as well.
It is to be expected, if the pattern of numerical analysis in
other branches of engineering provides any indication, that
the use of the finite-element method will become in-
creasingly important to microwave engineers in future
years.

IV. MicrosTRIP AND RELATED GUIDES

Strip, slot, and similar wave guides lend themselves
well to microwave integrated circuit design. They have
consequently enjoyed considerable popularity in the past
decade.

Initial attempts to analyze microstrip relied on a TEM
approximation and addressed themselves to the electro-
static problem of a charged microstrip [227, [237]. The
results of such analyses, which have in the meantime been
extended to multiple strips and multiple substrates, are
accurate at very low frequencies where the propagating
wave is essentially TEM in nature. In reality, however,
hybrid waves are the only ones possible on an inhomo-
geneous-dielectric structure, and at frequencies well
within the current range of technological interest, disper-
sion makes itself felt strongly enough to have a sub-
stantial effect on design. To date, no attempt has been
published to extend the integral equation analysis of the
electrostatic line to the dispersive case. An interesting
ad hoe approximation has been published by Jain et al.
[247, who attempted to correct the TEM analysis by
adding a single surface-wave component. Another possi-
bility is to transform the relevant field equations into the
spectral domain, as reported by Denlinger [25] and by
Itoh and Mittra [267], and to determine approximate solu-
tions of the transformed equations. Virtually all other
analyses, -beginning with the first one published by
Zysman and Varon [27], have addressed the related
problem of a microstrip line enclosed by a shielding box,
which can alternatively be regarded as the problem of a
rectangular dielectric-slab loaded waveguide, with a
metallic strip placed upon the dielectric slab.
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For the shielded microstrip, several solutions are avail-
able. A finite-difference formulation was given by Hornsby
and Gopinath [28]. Subsequently, Daly [29] used a
finite-element formulation similar to that of Csendes and
Silvester [30]. More recently, Corr and Davies [31]
returned to the finite-difference formulation, using direct
Householder transformations of the resulting matrices so
as to avoid iterative methods whose convergence has
long been known to the uncertain in this application [32].
Each of these investigators formulated the problem in
terms of two Helmholtz equations (one for the longitudinal
magnetic, the other for the electric field) coupled by the
appropriate boundary conditions at the interface between
dielectric media. The resulting solutions include not only
the possible propagating modes, but also a number of other
solutions that have no physical existence. The nonphysical
solutions seem to result from choosing approximating
functions out of function spaces that include function
pairs not satisfying Maxwell’s equations.

Since the shielded microstrip problem inherently in-
volves rectangular geometries, it is a natural candidate
for the method of subregions. Results obtained using this
method have recently been published by Krage and
Haddad [33] and by Kowalski and Pregla [34], among
others.

Although several methods now exist for producing the
current dispersion curve of the fundamental mode in
microstrip, all of the analyses presented so far have the
fundamental shortcoming that they do not automatically
produce the mode patterns for the first few modes in a
computationally convenient form. In addition to the
difficulty alluded to above, all formulations that involve a
shielding box necessarily add waveguide-like modes that
may physically propagate in the real model, but which do
not exist on unshielded microstrip. Thus the use of these
results in circuit modeling still requires considerable
manual intervention by skilled hands. In the authors’
opinion, the definitive method for open microstrip is still
to be published.

V. WAVEGUIDE DISCONTINUITIES

The numerical methods appearing in recent years on the
analysis of waveguide discontinuities may be classified
into four broad categories: modal approximation tech-~
niques; integral equation formulations; transverse dis-
continuity representations; and longitudinal discontinuity
representations. Each of these types of procedures is
based on a different technique for reducing waveguide
discontinuity problems to one or two dimensions. It is
perhaps indicative of the state of the art that for wave-
guide discontinuity problems, not a single truly three-
dimensional solution has been published, although every
waveguide discontinuity problem 1is inherently three
dimensional in nature.

The geometry with which we will be concerned is indi-
cated in Fig. 5, where the discontinuity is entirely confined
between the planes a and b and the guiding structures are
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Fig. 5. Typical two-port passive device or wave guide discon-
tinuity, consisting of a cavity enclosing an obstacle.

assumed to extend uniformly to infinity. The obstacle
may be either metal or dielectric and is very often confined
to either of the planes a or b. The solution of discontinuity
problems involving the junction of three or more wave-
guides is obtained in essentially the same manner as the
two waveguide case and will not be treated separately here.

The mathematical statement of the problem depicted in
Fig. 5 is that the electric and magnetic fields must satisfy
the vector Helmholtz equation

(V+ ) =0 (6)

subject to the usual boundary conditions. As usual, the
first step in determining a network model for this problem
is to establish a hypothetical guiding structure having
known and compatible physical characteristics. In the
present case, this hypothetical guiding structure may be
taken to be the two semi-infinite waveguide sections in
Fig. 6. Using the methods of Section ITI, the solution of
the two semi-infinite waveguides in Fig. 6(a) can be
determined. This solution is then subtracted from the
solution of the problem in Fig. 5, leaving only evanescent
fields in the neighborhood of the discontinuity. The im-
pedance matrix and the scattering parameters of the dis-
continuity are then calculated from the energy associated
with this residue. The following sections will indicate the
established procedures for solving the boundary value
problem in Fig. 5.

As stated in the Introduction, the locations of the
terminal planes are arbitrary. We could equally well have
chosen the hypothetical guiding structure in Fig. 6(b)

a{ v~
| \\

(a)

6=For H

V7

I
)

Fig. 6. Two possible reference solutions for discontinuity problem
of Fig. 5.
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for the field reference, this structure being of the same
overall length as the waveguide being modeled. The
evanescent residue obtained by subtracting the fields in
Fig. 6(b) from the fields in Fig. 5 is obviously different
from that obtained by subtracting the fields in Fig. 6(b)
from those in Fig. 5 and will result in a different charac-
terization of the discontinuity. Thus values of negative
capacitance and negative inductance can and often are ob-
tained for microwave discontinuities; no physical con-
tradiction arises, since these capacitances and inductances
are not absolute quantities, only values relative to some
hypothetical guiding structure.

VI. MopAL ANALYSIS

One of the best established numerical procedures for the
solution of the boundary value problem defined by (6)
is the modal analysis technique. This procedure is directly
applicable to structures containing planar discontinuities
only, although several discontinuity planes may appear in
one problem. The idea behind the method is an extension
of the discussion given above for the replacement of a
waveguide discontinuity problem by two corresponding
hypothetical semi-infinite uniform waveguides. Provided
that the discontinuity is planar, as in the example in
Fig. 7(a), a hypothetical wave-guiding structure may be
defined with a region of definition exactly corresponding to
the region defined by the original problem, as illustrated in
Fig. 7(b). Now, it is well known that the modes in a uni-
form waveguide form a complete set of functions. There-
fore, the modes corresponding to the hypothetical wave-
guide structure may be used as basis functions to approxi-
mate the electromagnetic fields in waveguides containing
planar discontinuities. In fact, by using waveguide
modes as approximation functions, the Helmholtz equa-
tion (6) and the necessary .boundary conditions are
satisfied everywhere except on the discontinuity plane P.
Therefore, it is only necessary to enforce that the electric
and magnetic fields satisfy the appropriate boundary
conditions on the discontinuity plane P.

In the early use of the modal analysis technique, the

(b)

Fig. 7. (a) Transverse discontinuity at junction of two waveguides.
(b) Subdivision of discontinuity region at discontinuity plane.
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equality of the electric and magnetic fields on the two
sides of the plane was accomplished either by point
matching or by matching Fourier coefficients. Examples
of these types of analyses are the point matching and modal
approach used by Shockley et al. [35] to solve a linearly
tapered waveguide section problem and the Fourier
coefficient matching analysis of Lucas [367] regarding
waveguide planar offset problems. Experience indicates,
however, that both of these approaches can lead to diver-
gent results and therefore better methods of equating
fields across the discontinuity plane are required. One
successful approach to modal analysis was proposed inde-
pendently in three separate papers in 1967, by Clarricoats
and Slinn [377], Wexler [38], and Cole et al. [397]. In
these papers, the electric and magnetic fields are made to
satisfy the orthogonality condition

/ ExH-d8=0 )
on the metal wall at P and across the interface between
waveguides. This corresponds to the requirement that no
net power may be transferred into metal walls and that
the power leaving one guide equals the power entering the
other.

Quite a number of papers have appeared in the literature
since 1967 using the approach to solve particular wave-
guide discontinuity problems. In them, Bates [407] used
modal analysis to determine the behavior of junctions
between straight and curved waveguides; Huckle and
Masterman [417 treated the H-plane junction of a wave-
guide containing a row of rectangular ports; Schlude [42]]
solved waveguide discontinuity problems in which thin
irises occur; Krohne [43] studied the junction of two
circular waveguides, one of which contained a coaxial
dielectric rod; and MeDonald [44] analyzed two identical
resonant cavities coupled by an aperature of arbitrary
thickness.

In addition to these papers, one further paper has
appeared since 1967, presenting a very general theory of
modal analysis based on the condition contained in (7).
This paper by Masterman and Clarricoats [45] is a

" particularly elegant formulation incorporating both matrix

notation and an arbitrary source. The reader interested in
furthering his knowledge of modal analysis should consult
this paper as a primary reference.

An alternative convergent approach to the matching of
fields on the plane P in modal analysis has recently been
proposed by Davies [467]. In this paper, the fields across
the discontinuity plane are equated by minimizing the
functional

F=/[] (By — By) X At + Zo| (Fy — Hs) X 7 [2]d8

(8)

where the subseripts 1 and 2 indicate the fields in the two
guides. The primary attraction of this formulation is that
the method is rigorously proved to be convergent in a well
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known norm, since it represents a particular case of classi-
cal least squares minimization.

Finally, before leaving the subject of modal analysis,
it is appropriate to add that the hypothetical waveguide
modes defined above are not the only possible functions to
use as approximating functions in modal analysis. The
work of Burshteyn [47 ] indicates that another useful set of
approximation functions in modal analysis are the fields
obtained by short circuiting the discontinuity ends of the
equivalent hypothetical waveguides. Furthermore,
Knetsch [487] has formulated the modal analysis technique
in terms of an arbitrary set of orthogonal functions. There-
fore, one should not discount the possibility of using ap-
proximating functions other than the waveguide mode
functions in modal analysis.

VII. INTEGRAL EQUATION FORMULATION

The solution of waveguide discontinuity problems using
integral equation methods has been established for a long
time. A summary of theoretical work based on these
methods is provided by Felsen and Kahn [497]. In recent
years, the use of the point matehing method in the
solution of integral equations has become increasingly
popular, with a monograph on the subject by Harrington
[507] receiving widespread attention. It is regrettable that
the almost exclusive use of the point matching technique in
this monograph has often led to interchangeable use of
the terms point maiching and moment method in microwave
literature, contrary to established usage in other fields of
science and technology [517].

In a typical integral equation formulation of a wave-
guide discontinuity problem, an equation of the form

Ei(r) = f K(ryp')J (') dr' (9)
is determined where E; is the incident electric field and J
is the unknown current distribution around the dis-
continuity. J(r) and E,(r) are then approximated by
some easily evaluated functions such as polynomials or
trigonometric functions and a corresponding approxima-
tion of the kernel function K is made. The resulting matrix
equation yields an approximate value for the current
distribution on the discontinuity; from this distribution,
the value of the total electric field may be determined.
The application of this method to the integral equation
formulation of waveguide discontinuities has recently
been described by Thong [52], Wu and Chow [53],
and Chow and Wu [547]. [52] and [53] present a more or
less straightforward analysis, while [54] uses an unusual
combination of mixed basis functions to approximate the
current distribution. In this formulation, the current is
written as a sum of incident, scattered, and evanescent
terms:

J-=jz+js+je (10)

with incident and scattered terms being approximated by
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the corresponding hypothetical waveguide currents. The
evanescent current is, however, approximated by pulse
functions defined over a finite region surrounding the dis-
continuity. Thus the method makes good use of the
approximating function space: functions with infinite
support approximate currents of infinite extent and func-
tions having local support approximate localized currents.

It should be pointed out with regard to the above
method that point matching may nof be regarded as
testing with Dirac delta functions as is often asserted, e.g.,
by Thong [527 and by Chow and Wu [54]. Since the
Dirac delta function is not square integrable, it is not an
element of the Hilbert space of square-summable functions
and may not be used for “testing.” In fact, it has been
shown by Oden [557, that in addition to the Dirac delta
function, finite-dimensional data functions may be defined
and that they are equivalent to the conjugate basis func-
tions of interpolation polynomials. Therefore, the point
matching procedure is equivalent to testing with the
conjugate basis functions to interpolation polynomials.
Turther, since it is also known that the optimal approxi-
mation of a function is made only when the expansion and
testing functions in the moment method are conjugates of
one another [567], this implies that the most accurate
point matching solution will be obtained only when the
expansion functions are interpolatory.

Other difficulties are often encountered in the integral
equation formulation of iris problems, as evidenced by
recent papers by Mittra et al. [57] and by Lee et al. [58].
Both are concerned with the “relative convergence”
phenomenon. Relative convergence is a term used to
describe the existence of numerical instability in the
approximation of the integral equation by trigonometric
expansion functions. Although this phenomenon may be
explained analytically, a consequence of the phenomenon
is large roundoff error in the solution of an ill-conditioned
matrix equation representing the kernel of the integral
equation [577]. Thus the cure for relative convergence
would appear to be the use of less oscillatory approxima-
tion functions, which would result in more stable matrix
equations.

With regard to the integral equation solution of wave-
guide discontinuity problems, it should be mentioned that
an attempt has been made by Amitay and Galindo [59] to
determine an error estimate for the solution. Sadly,
however, the authors report that the usefulness of the
error bound is very limited.

VIII. TRANSVERSE AND LONGITUDINAL
REPRESENTATIONS

The remaining numerical methods for the solution of
waveguide discontinuity problems reduce the three-
dimensional boundary value problem in (6) to a two-
dimensional one by the method of separation of variables.
In the case of a rectangular or circular wave-guiding
structure with a uniform diseontinuity in the transverse
plane, this is accomplished by noting that the transverse
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field variation is sinusoidal, with the remaining variation
satisfying the two-dimensional Helmholtz equation. In
the case of a guiding structure with a gradually varying
discontinuity in the longitudinal direction, the separation
is performed by writing generalized telegraphist’s equa-
tions for the longitudinal variation of the fields in terms of
the waveguide cross-section modes.

An early numerical method for solving discontinuities
of uniform cross section in rectangular waveguides was
reported by Muilwyk and Davies [607]. They adapted an
experimental procedure proposed by Montgomery et al.
[61] for finding the scattering parameters of a discon-
tinuity by locating the nulls of its standing wave patterns.
As indicated by Fig. 8, in a rectangular waveguide con-
taining a discontinuity, a sequence of standing wave
patterns may be determined by solving the sequence of
field problems defined by taking each of the pairs of
planes as locations of field nulls, Muilwyk and Davies
solved the associated field problems using the finite-
difference method and reported obtaining good accuracy.

A deficiency in the method used by Muilwyk and Davies
is that the finite-difference program used was limited to
determining only the dominant mode of the structure.
Hence, the arbitrarily imposed field null must be taken
very close to the discontinuity for a given frequency.
Obviously, the use of higher order modes, which would
allow the field null closest to the discontinuity to be non-
planar, would result in higher accuracies. Since higher
order modes are readily produced by finite-element com-
puter programs, the possibility of using the above formula-
tion in conjunction with the finite-element method is very
attractive and awaits future investigation.

Using a similar reasoning, Silvester and Cermak [62]
have reported the development of a finite-difference
program to solve coaxial line discontinuities in the trans-
verse plane. An advantage of their formulation is that the
boundary conditions at the open ends are imposed by
boundary relaxation (a procedure available only for TEM
structures) and does not introduce the inaccuracy as-
sociated with an artificial boundary condition. However,
the finite-difference method has been largely superseded
by the finite-element method, and boundary relaxation by
the method of Silvester and Hsieh [67], so that present day
applications of the method should take advantage of the
newer more powerful computational techniques.

Another interesting paper making use of this type of
transverse discontinuity analysis is by Johns and Beurle
[63] who use a network analog method for solving the
transverse discontinuity problem. An advantage of their
formulation is that the network analog approach facilitates
the evaluation of the discontinuity impedance.

Lastly, we turn to the solution of tapered discontinuities
in waveguides in the longitudinal direction. The applica-
tion of numerical methods to this problem has been
reported by Davies et al. [64]. They use a closed-form
solution of the generalized telegraphist’s equations, given
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Fig. 8. Sequence of trial null planes for Muilwyk and Davies’
analysis of waveguide discontinuities.

in terros of the waveguide modes of the varying waveguide
cross section, to determine the impedance of the dis-
continuity. The waveguide modes are computed numeri-
cally using the methods outlined in Section ITI.

IX. StrirLIiNE DiscoNTiNUITIES AND Pranar CIRCUITS

Discontinuities in mierostrip, triplate, and other forms
of strip transmission structures have recently assumed
major importance in microwave engineering as a result of
changing technology. These discontinuities are usually
modeled by equivalent cireuits containing one or a few
reactive elements, and occasionally short lengths of
idealized TEM line. The reactive element values in such
simple models can be found by direct experimental
measurement, and considerable amounts of measured data
have been gathered. The large variety of possible shapes
and materials, however, has rendered mathematical
modeling very desirable.

The simplest possible discontinuity in a stripline, the
open-circuited end, has probably attracted more attention
than any other. Troughton [65] has used experimentally
obtained data for multistub filters. Shortly thereafter,
Farrar and Adams [66] gave the first computed results.
The open-circuited line is modeled similarly to the coaxial
cable open circuit of Fig. 1, i.e., the terminal plane is taken
at the end of the strip and a single shunting capacitor is
assumed to represent the discontinuity adequately. The
essential problem of finding the value of this capacitor was
solved by Farrar and Adams by finding the capacitance
of a finite-length stripline. Such a finite-length section may
be modeled by an idealized TEM line connecting two end
capacitances; at very low frequencies the finite-line section
may be modeled as the shunt combination of three capaci-
tors, the two end-effect capacitors, and the capacitance
of the line section itself. By repeating computations for
ever longer line lengths and each time subtracting the
known electrostatic capacitance of the idealized line, a
value for the end capacitance is obtained. The process of
taking several lengths of line is necessary to ensure that
the charge distributions attributable to the two ends do not
interact. To find the capacitance values each time the
integral equation governing the charge distribution of the
strip

v = [ G(PQ)n(Q) aQ (11)
is solved numerically using a two-dimensional staircase
approximation for the charge density, by a point matching
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method. In the above, & represents the Green’s function
appropriate to the problem; P and @ are the observation
and source points, respectively, and V is the electric
scalar potential. A gimilar solution, using polynomial
approximants and a projective solution technique, was
subsequently given by Benedek and Silvester [67].

Whichever way the integral equation is solved, a funda-
mental difficulty appears. If the finite length of strip is
made long enough to ensure that the end effects do not
interact, the line capacitance becomes large compared to
the end effect capacitance, so that numerical solutions of
extremely high accuracy are required to prevent disastrous
loss of significant figures when the static line capacitance is
subtracted. This difficulty can be circumvented entirely by
formulating another integral equation in which the un-
known is not the total charge on the strip, but the excess
charge attributable to the end effect.

This integral equation is identical in form to the one
above, but the Green’s function is more complicated.
Such a formulation was used by Benedek and Silvester
[68] to find equivalent circuits for line gaps and step
width changes, as well as for T junctions and crossings
£697]. '

Since there is no way of solving the integral equation for
charge distribution analytically, a variety of numerical
methods have been employed. In addition to the methods
already mentioned, finite-difference techniques and sub-
region matching methods have been employed [701-[72]].
Another possibility is that of using double Fourier trans-
forms on the integral equation and finding projective
solutions in the transform domain. This approach has been
pursued by Itoh et al. [737].

Although TEM approximations usually lead to accept-
able results at low frequencies, striplines containing several
dielectric media neccessarily propagate hybrid waves.
When electrostatic solutions do not suffice, more accurate
representations of a microstrip discontinuity may be
made by allowing for inductive effects. A typical dis-
continuity will then be modeled as the combination of its
static capacitance and its high-frequency asymptotic
inductance. The current distribution in a conductor of
arbitrary shape is described [74] by an integral equation
similar to that governing the electrostatic charge distribu-
tion, but involving the vector current density, instead of
the scalar charge density. A solution of this problem has
recently been given by Gopinath and Silvester [737].

Microwave planar circuits may be regarded as gen-
eralized stripline junctions and are analogous to multiport
resonant cavities in waveguide technology. They are
readily fabricated in the same process as striplines and
have therefore recently attracted attention. In analyzing
planar circuits, two approaches have been proposed. The
first treats the planar circuit as if it were a combination of
stripline junctions, while the second makes use of their
similarity to resonant cavities.

In the generalized stripline junction formulation of
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Okoshi and Miyoshi [76], the basic planar circuit field
problem is expressed in terms of an integral equation that
is solved numerically. This yields a description of the
multiport network in terms of port impedance matrices for
each frequency of interest. A second stripline junction
formulation for planar circuits has been presented by
Bianco and Ridella [77] who performed the analysis
using a modified subdomain method. Unfortunately, their
work is largely restricted to rectangular networks since
they employed trigonometric funetions as their basie
tools.

More recently, several workers have noted that a
resonant-cavity approach permitted a substantial reduc-
tion in computing time as well as allowing relatively simple
but comprehensible equivalent networks to be drawn. The
formulation given by Hsu [787] has produced relatively
simple equivalent networks even in the multiport case,
while the approach of Silvester [797 has lead directly to
port admittance matrices. These formulations are closely
related and share the advantage that once the equivalent
network, or certain functions characterizing the planar
cireuit, are known, only very simple arithmetic calculations
are required at each frequency of interest.

It will be noted from the above that little if any attempt
has so far been made to create synthesis programs for
stripline or planar network -configurations. However,
since all of the analysis methods used rely on representing
the network geometry in terms of a finite set of parameters,
it seems highly probable that at least some direct synthesis
will be possible at an early date.

X. CONCLUSIONS

Numerical modeling and analysis methods have per-
mitted a much wider variety of passive microwave devices
to be characterized than could possibly be contemplated by
experimental methods alone. Most of the numerical tech-
niques currently employed are quite new, and future
development can be expected to increase their scope and
power. For the present, the majority of modeling tech-
niques are restricted to two-dimensional problems and
therefore find direct application only wherever the device
to be analyzed is uniform in one direction, so that the
inherently three-dimensional field problems associated
with the device can be reduced to two-dimensional form
by a partial separation of the variables.

The present state of the numerical modeling art can
best be summarized by stating that characterizations may .
be obtained for a large class of devices with accuracies at
least adequate for most engineering purposes. However,
the device optimization problem, which presumably
requires repeated analysis, has as yet hardly been touched.
Success in this direction will require considerable future
work in two areas. First, further improvement in numerical
methods is required to reduce the cost of each individual
analysis to a lower level. Second, and perhaps more im-
portant, substantial new work is required in turning such
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geometric variables as shape into numerical quantities,
both to facilitate man—machine communication and to
permit design optimization algorithms to be constructed
in an efficient manner.
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