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A&stracf—Passive linear bilateraf microwave devices principally

include guided wave transmission structures, their junctions, and

interconnections, as well as such complex devices as resonant cavi-

ties and planar networks. The computational methods for analyzing

the behavior of this class of structures and for characterizing them

for purposes of network design are brieily reviewed.

I. INTRODUCTION

A PASSIVE microwave device may be defined as a

closed box filled with a heterogeneous combination

of passive material media, connected to the rest of the

universe through a finite number of clearly definable

ports. This definition contains within it the classical and

general definition of a waveguide junction, if all the ports

are of the closed waveguide type. The object of the present

paper is to review recent literature in the area of numerical

modeling of passive microwave devices and to provide a

selected bibliography of contributions to this field.

It maybe noted that the literature available on passive

microwave devices is extremely extensive and even when

the discussion is restricted to the computational methods

used in modeling passive devices, an enormous amount of

material remains. To keep the subject matter within

reasonable bounds, we have endeavored to choose a

representative cross section of the available literature; no

attempt has been made to create an exhaustive bib-

liography. Indeed, it is doubtful whether a complete

bibliography for so broad a field would be useful. Our

‘kaw” bibliography compiled while writing this paper

included over 1000 items. A rough estimate of the total

available literature may be obtained by checking the raw

bibliography against citations in recently published

papers. From such internal evidence, it would appear that

the world literature on passive device modeling presently

comprises about 10000 papers, of which about half maybe

termed “recent.” Since our interest in this paper is pri-
marily expository rather than historical, we shall con-

centrate heavily on recent papers in the field, with only an

occasional reference to work done a decade or more ago.

Furthermore, we recognize that the distinction between

numerical and analytic methods is sometimes blurred, and

will use as a guide in the survey the criterion that a

numerical method leads to an algorithm for the solution of

a. ~roblem~ whereas an analytic method yields an expres-
sion of more or less closed form.
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In general, a microwave network may be regarded as a

collection of active and passive devices-that is to say,

finite-sized noninteracting blocks or boxes—whose ports

are interconnected in some prescribed fashion by wave

guides.1 These may be standard hollow waveguides,

transmission lines, dielectric surface guides, or any other

wave-guiding structures. For present purposes, microwave

network analysis may be regarded as a process in which

each device and each section of wave guide is mathe-

matically modeled by a matrix, the individual matrices

being combined in a manner corresponding to the inter-

connection of guides and devices so as to arrive at a com-

posite mathematical model for the entire network. In the

following, we shall restrict our attention to interconnec-

tions of passive bilateral linear devices: there is a certain

amount of unity in the mathematics used for their treat-

ment, while devices including anisotropic or nonlinear
materials (e.g., plasmas and f errites) often require

specialized methods.

The modeling procedure is a two-part process. First,

the fields inside the device are approximated by

linear combinations of functions chosen in advance;

subsequently, the expansion coefficients of these approxi-

mating functions are related to port parameters. Once the

approximating ,functions have been chosen, all matrix

representations based on the same approximating func-

tions can be obtained from each other by simple matrix

transformations. For example, impedance matrices may be

transformed into admittance matrices by inversion, or into

the ABCD parameters of a two-port by a rearrangement of

matrix entries. Which choice of representation is best is a

decision for the microwave network analysis program

designer: for modeling purposes, it is the choice of ap-

proximating functions that matters.

To illustrate the process by a simple physical example,

consider the semi-infinite coaxial line terminated in an

open circuit, shown in Fig. 1(a). It will be assumed that

the operating frequency is low enough to allow only the

TEM wave to propagate. A simple equivalent circuit,

valid at low frequencies, consists of a semi-infinite length

of “perfect” TEM line, with a terminating capacitor to

account for the extra energy stored in the end region shown

in Fig. 1(b). The essence of the passive device modeling

problem is to find the correct value for this capacitor. It

should be noted that this value and the length to be

assigned to the transmission-line section both depend on

1 We distinguish in this paper between wave guides (longitudinally
uniform structures capable of guiding waves) and waoeguides (uni-
form closed metallic pipes).
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Fig. 1. (a) Semi-infinite coaxial line terminated in open circuit. (b)
Low-frequency model, comprising idealized TEM line and lumped
capacitor. (c) Boundary value problem for determining end
capacitance.

where the imaginary division between transmission line

and passive device (the so-called terminal plane) is made,

It will be readily appreciated that the terminal plane

location is entirely arbitrary, since the plane is wholly

imaginary.

The equivalent network model of Fig. 1 (b) postulates

in effect that a pure unmodified TEM wave pair (one

incident and one reflected wave) exists in the semi-

infinite line, up to the terminal plane; one imagines that

this wave pair suddenly disappears at the terminal plane

and does not exist on its right-hand side. To the right of

the terminal plane, a field is supposed to exist that satisfies

Laplace’s equation, subject to the given boundary condi-

tions on all metal surfaces and to appropriate continuity

conditions on the terminal plane. As a first approximation,

one may imagine that the equipotential lines in this

problem are essentially normal to the terminal plane

everywhere. In that case, it suffices to solve the boundary

value problem shown in Fig. 1(c) to find the fields in the

end region beyond the terminal plane. The capacitance

value may then be calculated by evaluating the stored

energy in the field.

Consider next the modified open-circuited coaxial line

shown in Fig. 2(a). This problem is exactly similar to the

previous one, except that the end region has been enlarged,

forming a resonant cavity of significant size. Since a

resonant cavity has an infinite number of resonant fre-

quencies, the correct equivalent circuit, Fig. 2(b), should

theoretically include an infinite number of branches. Of

course in practice only a few modes of the cavity will be

considered so that only a few resonant branches occur in

the network model. Indeed, it should be noted that the

model of Fig. 1(b) represents the low-frequency asymp-

totic behavior of the model of Fig. 2(b).

At relatively high frequencies, modes other than TEM

may propagate along the coaxial line. These modes are, of

course, linearly independent throughout the length of

the coaxial guide, and may therefore be modeled by
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Fig. 2. (a) Coaxial line terminated in resonant cavity. (b) Network
model valid at low frequencies. (c) Multiport model, valid at fre-
quencies where multimode propagation can take place.

separate wave guides connected at the terminal plane.

If high-order modes in addition to the TEM mode

propagate, the line-and-cavity problem of Fig. 2(a)

requires the model shown in Fig. 2(c). The number of

ports to be assigned to the network model clearly depends

on the number of propagating modes that each transmis-

sion structure can support; one network port must be

provided for each possible mode. For this reason, any

model will remain valid only over a restricted frequent y

range.

The detailed mathematical techniques used in the

modeling of passive devices vary enormously, yet the

fundamental steps remain virtually the same. The first

task of the analyst is to identify the possible propagating

modes on each of the transmission structures at the fre-

quency of interest. Secondly, terminal planes must be

specified so as to define unambiguously which region of

space will be considered to form the device to be modeled.

Third, a choice must be made as to the description of the

ports. Since a pair of waves will exist for each port, alterna-

tive representations are in terms of incident and reflected

wave amplitudes or in terms of port voltage and current.

The fourth step involves providing a description for all

possible interior field configurations at the operating fre-

quency; this is frequently done as an expansion in the
normal modes of the device to be modeled, though often

other representations are used. Fifth, the usual continuity

requirements of electromagnetic theory are imposed at the

ports so as to obtain relationships between the internal

field and the amplitudes of the externally propagating

incident and reflected waves.

In the following, the most common varieties of trans-



192 IEEE TRANSACTIONSON MICROWAVNT=ORY AND ‘1’ECHNIQ~S,N?ARCH1974

mission structure are first considered, and methods for

identifying their modal structure briefly reviewed: the

TEM transmission line, the hollow waveguide, and micro-

strip. Thereafter, methods applicable to passive devices

with one or more ports are examined.

II. MODELS OF TEM LINES

TEM lines are by definition those wave guides in which

only a single mode, the TEM mode, is assumed to propa-

gate. This mode is completely described by a scalar poten-

tial # where

* = O(LY) Cos (w~ – ~z) (1)

the velocity of propagation being always equal to the

velocity of light in the dielectric medium of the TEM line.

The function @in turn satisfied Laplaee’s equation

V’+(z,y) = o (2)

in the plane transverse to the direction of propagation, and

subject to the boundary conditions that + must have

exactly the same value everywhere on the surface of any

single conductor forming part of the line.

The above two-dimensional boundary value problem,

involving Laplace’s equation with Dirichlet boundary

conditions, is commonly used by numerical analysts as a

model problem in the development of numerical methods.

It is among the easiest of continuu& problems to solve

numerically, provided that the region of solution is finite;

that is to say, provided that the TEM line is topologically

of the coaxial type, in which one conductor forms an en-

closing shield around the other. The classical method of

finite differences is well suited to this problem and has

been used, for example, by Metcalf [1] to determine the

potential distribution and the characteristic impedance of

lines composed of square coaxial conductors. The essence

of the finite-difference method is to replace the continuum

equation (2) by a large set of discrete algebraic equations

that are solved iteratively. This class of techniques maybe

regarded as well established, and for details of irnplement~

tion the reader is referred to wexler’s review paper [2]

and to the book by Wachspress [3].

An alternative method “that has proved popuIar, and

of which many variants exist, “requires the region in which

Laplace’s equation is to be solved to be divided into sub-

regions, in each of which’ the equation may be solved by

separation of variables. For example, Fig. 3 shows the

cross-sectional shape of a curious coaxial line, which may

be subdivided, as indicated, into an annular region and a

rectangular region. In the rectan~ar region, solutions of

Laplace’s equation may be written’ as a double Fourier’s

series, whose coefficients are as yet unknown; in the

annular region, a double series” in Bessel functions and

trigonometric functions serves the same purpose. Along the
imaginary dividing l@e between subregions, the usual

continuity equations of electromagnetic must hold.

Hence the two infinite series expansions must have coeE-

cients such that: a) Laplace’s equation is satisfied in each

~ l_]
Fig. 3. Coaxial transmission-line problem permitting approximate

solution by separation of variables m individual subregions,
followed by imposition of contmuty requirements along sub-
region boundaries.

subregion; and b) all fields are continuous across the

diwiding lines. These relationships between coefficients

may be written in the fQrm of infinite matrix equations,

w~ch maybe solved numerically if each series is t~ncated

to a finite number of terms. An early variant of this

method was termed “orthonormal block analysis” by

Cruzan and Garver [4]; numerous other versions have

been published since then. Site it is obtiously impossible

to satisfy the continuity conditions everywhere along the

dividing lhies with only a finite number of adjustable

coefficients, a variety of choices exists: one may require

continuity at a selected n&nber of points, or in a least

squares sense at all points of the dividing line, or & various

other ways, each of which effectively yields another dis-

tinct version of the general method.

The methods described above are strictly applicable to

closed (i.e., coaxial) TEM lines. In the case of open ~mes,

as for example the classical two-wire pair, considerable

difficulties are encountered because it is not easy to model

the boundary condition at infinity. There exists, of course,

the possibility of introducing a purely artificial boundary

at a location judged OF physical grounds to be sufficiently

far away. However, this approach leaves much to be

desired both in terms of computational efhciency and in the

amount of physical insight and judgment that must be

used with the computer “programs. In recent years, there-

fore, efforts have been made to develop methods that

model the infinite exterior region more accurately. For

example, Fig. 4 shows an open-wire pair composed of

square wires; the region in which Laplace’s equation

rn”ust be satisfied is the entire x-y plane, except for the

interiors of the wires themselves. An early method of

solving this problem, termed “boundary relaxation”” by

Cermak and Silvester [5], proceeds to encase the wires

h two nested window frames, as indicated in Fig. 4(a).

If the values of potential everywhere Qn the outer frame A

are assumed, there remains a straightforward boundary

value problem that may be solved by finite-difference

methods or by any of the other methods just discussed.

Such a solution will yield, among other data, potential

values on the inner window frame B. If potential values

on this frame are kown, however, potential values any-

where in the region exterior to B may be computed. This

exterior solution will include with@ it new potential

values on the frame ~. It can be shown theoretically and

has been demonstrated computationally that the potential

values thus obtained on frame A are nearer the correct
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Fig. 4. (a) Two-frame formulation of opm-boundaries problems.
(b) Single frame may be used m alternate formulation.

values than the initial estimate; that is to say, the pro-

cedure described may be regarded as one step of a con-

vergent iterative process. The end result of the process isa

solution that looks as if the problem had been solved for

the whole infinite plane, but only the portion enclosed

within the window frame A was available for examination.

A second possibility, closely related to boundary relaxa-

tion, is to employ only a single frame, as shown in Fig.

4(b). The potential values anywhere in the exterior region,

including on the window frame itself, satisfy the integral

equation

(3)

where G is the Green’s function for the Laplacian operator

and the integral extends over the frame contour. This

integral equation may be approximated by a matrix equa-

tion. Similarly, the interior problem of Laplace’s equation

within the window frame of Fig. 4(b) may be approxi-

mated by a matrix equation. In this way, two matrix

equations are set up that share the potential values along

the window frame as unknowns. Simultaneous solution of

both equations then yields potential values within and on

the window frame. This method was proposed by Silvester

and Hsieh [6], the interior discretization being accom-

plished by the finite-element method. Careful attention to

the method of discretization is required in this technique,

since the integral operator in (3) is invariably singular. A

related method, employing two window frames as in Fig.

4(a), has recently been employed by McDonald and

Wexler [7]; integration through the singularity y is avoided

in this way.

Once the potential distribution in a TEM line has been

found, the characteristic impedance may be determined

by finding the capacitance per unit length of line. A

straightforward method for doing this is to find the normal

derivative of the potential at the conductor surfaces (this
is proportional to the charge density) and then to integrate

over the conductors to find the total charge for the given

potential cliff erence. Howeverj since numerical cliff erentia-

tion is very unstable, “in most numerical methods of solu-

tion it is easier and more accurate to find the stored energy

in the field and then to calculate the capacitance from the

stored energy. A variationally stationary capacitance

formulation suitable for use with finite-element methods

based on energy has recently been ,4ven by Daly and—
Helps [8]. ‘“

III. HOLLOW WAVEGUIDES

A hollow waveguide filled with homogeneous isotropic

dielectric is capable of propagating two distinct sets of

modes, TE and TM, and there exist infinitely many

modes of each kind. The numerical problem of determining

the possible propagating modes is therefore” somewhat

more complicated than the solution of a TEM line, where

only one mode is possible. It can be shown that both types

of modes satisfy the homogeneous Helmholtz equation

(v’+ k’)@ = o (4)
.

subject to, homogeneous Dirichlet or Neumann boundary

conditions in the TM and TE cases, respectively. Equa-
tion (4) represents a classical eigenvalue problem,

possessing infinitely many solutions corresponding to an

infinity of eigenvalues k2.

Finite-difference methods have been applied to the

homogeneous waveguide problem. Davies and Muilwyk

[9] reported what was probably the first general-purpose

computer program using this method, although the tech-

nique itself had been known and extensively discussed

much earlier. As in almost all numerical methods, with the

finite-difference method the continuum equation (4)

is replaced by the matrix equation

(A +k’B)@ = O (5)

constructed in such a way that the eigenvalues and eigen-

vectors of the matrix problem give approximations to the

eigenvalues and eigenvectors of the continuum problem,

In this case, the matrix A has a particularly simple struc-

ture, while the matrix B is the identity matrix. However,

the matrix order is typically several thousand, .SO that

explicit methods are not very useful and iterative tech-

niques are normally resorted to. An unfortunate dMiculty

with these iterative techniques is that regardless of the

initial iterate, the iteration always converges to the lowest

order propagating mode, and that high-order modes can-

not be found. Matrix deflation (also called mode subtrac-

tion), which permits finding highest modes in general

matrix problems, cannot be used with the sparse matrices

encountered in finite-difference approximations without

considerable difficulty. To circumvent this problem,

Beaubien and Wexler [10] proposed an ingenious scheme.

Once the dominant solution to (4) has been found, a new

problem is constructed [11] in which the Laplacian
operator in (4) is replaced by another operator possessing

the same eigenvectors, but with the first eigenvalue

removed. An iterative solution will then automatically

converge to the second mode of (4). This process may be

continued to determine as many propagating modes as
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desired, with the computing cost very roughly propor-

tional to the number of modes calculated.

The method of subregions referred to above in connec-

tion with TEM lines, sometimes also called the mode,.
matching method, has also found considerable application

in the analysis of wave guides [12], [13]. The essence of

the technique is very similar to that pursued in the solution

of TEM line problems, except of course that a rn.atrix

eigenvalue problem results instead in an indeterminate

set of simultaneous equations.

The direct Rayleigh–Ritz approximation method has

been known for a long time, and it is surprising that it was

not applied as a general procedure to waveguide problems

until relatively recently. Its use is s~raightforward for the

determination of TE modes [14],’ where the boundary

conditions of the Rayleigh–Ritz functional are natural.

Determination of the TM modes, however, for which the

usual electromagnetic boundary conditions are principal

and must be imposed upon the approximating functions

from the start, are more difficult. For a large variety of

waveguide shapes, ho~ever, construction of such func-

tions is possible, making the Rayleigh–Ritz method quite

useful. Approximating functions are typically chosen to be

either polynomials in cartesia-n- coordinates or in polar

coordinates [15]; in the former case, some difficulty maybe

encountered with reen@ant cross sections, while the second

choice is best if the cross sections are star shaped with

respect to a point.

For most elliptic boundary value problems, an equiva-

lent formulation in terms of a Fredholm integral equation

of the second kind may be given, and the Helmholtz

equation (4) is no exception. The possibility has certain

attractions, since a two-dimensional boundary value

problem is thus replaced by an integral equation involving

a contour integral, which is computationally very economi-

cal. The disadvantage of this approach is that the linear

eigenvalues appear in some complicated functional form.

Two distinct formulations have been given by Spielman

and H&rington [16] and by Ng and Bates [17]. In both

eases,- search techniques must be resorted to in order to

determine the eigen~alues, although the matrix sizes are

relatively small. As in any discrete search, there invariably

lurks the da~ger of some eigenvalues being missed, par-

titularly if they are nearly degenerate.

In the last few years, the finite-element method has

gained considerable ground in the solution of boundary

value problems and is at the present time preeminent in

the solution of waveguide problems. The method may be

loosely regarded as a combination of the method of sub-

regions and the Ritz minimization method; it differs,

however, fundamentally from the method of subregions

in that the approximating functions employed are required

to be continuous across subregion boundaries, but not

necessarily to satisfy the differential equations exactly

anywhere. The advantage of the method is that it com-

bines the figh accuracy and short computing times of the

Rayleigh–Ritz method with the flexibility and ease of

usage of the finite-difference method.

The first general-purpose finite-element computer

program was described by Silvester [18], who used tri-

angular elements and polynomial approximating functions

of up to the fourth order. A much more extensive and

flexible program, applicable to TEM lines as well as wave-

guides, and employing approximations up to sixth order

was subsequently published by Konrad and Silvester [19].

These computer programs produce, with a minimum of

data preparation, the solutions of arbitrary polygonal

waveguides, generally with accuracies of better than 0.1

percent for the dominant and first few higher order wave

numbers.

The solution of some specific waveguide problems with

the finite-ele!nent method has been published by Lagasse

and Van Bladel [20]. Furthermore, Daly [21] has

recently deseribed quasi-triangular elements with curved

sides, which share many of the desirable properties of

ordinary triangular elements. Isoparametric elements,

long used in many areas of continuum analysis, have

recently made an appearance in electromagnetic as well.

It is to be expected, if the pattern of numerical analysis in

other branches of engineering provides any indication, that

the use of the finite-element method will become in-

creasingly important to microwave engineers in future

years.

IV. MICROSTRIP AND RELATED GUIDES

Strip, slot, and similar wave guides lend themselves

well to microwave integrated circuit design. They have

consequently enj eyed considerable popularity in the past

decade.

Initial attempts to analyze microstrip relied on a TEM

approximation and addressed themselves to the electro-

static problem of a charged microstrip [22], [23]. The

results of such analyses, which have in the meantime been

extended to multiple strips and multiple substrates, are

accurate at very low frequencies where the propagating

wave is essentially TEM in nature. In reality, however,

hybrid waves are the only ones possible on an inhomo-

geneous-dielectric structure, and at frequencies well

within the current range of technological interest, disper-

sion makes itself felt strongly enough to have a sub-

stantial effect on design. To date, no attempt has been

published to extend the integral equation analysis of the

electrostatic line to the dispersive case. An interesting

ad hoc approximation has been published by Jain et al.

[24], who attempted to correct the TEM analysis by
adding a single surface-wave component. Another possi-

bility is to transform the relevant field equations into the

spectral domain, as reported by Denlinger [25] and by

Itoh and Mittra [26], and to determine approximate solu-

tions of the transformed equations. Virtually all other

analyses, beginning with the first one published by

Zysman and Varon [27], have addressed the related

problem of a microstrip line enclosed by a shielding ‘box,

which can alternatively be regarded as the problem of a

rectangular dielectric-slab loaded waveguide, with a

metallic strip placed upon the dielectric slab.



SILVESTERAND CSENDES: PASSIVEMICROWAVEDEVICES 195

For the shielded microstrip, several solutions are avail-

able. A finite-cliff erence formulation was given by Hornsby

and Gopinath [28]. Subsequently, Daly [29] used a

finite-element formulation similar to that of Csendes and

Silvester [30]. More recently, Corr and Davies [31]

returned to the finite-difference formulation, using direct

Householder transformations of the resulting matrices so

as to avoid iterative methods whose convergence has

long been known to the uncertain in this application [32].

Each of these investigators formulated the problem in

terms of two Helmholtz equations (one for the longitudinal

magnetic, the other for the electric field) coupled by the

appropriate boundary conditions at the interface between

dielectric media. The resulting solutions include not only

the possible propagating modes, but also a number of other

solutions that have no physical existence. The nonphysical

solutions seem to result from choosing approximating

functions out of function spaces that include function

pairs not satisfying Maxwell’s equations.

Since the shielded microstrip problem inherently in-

volves rectangular geometries, it is a natural candidate

for the method of subregions. Results obtained using this

method have recently been published by Krage and

Haddad [33] and by Kowalski and Pregla [34], among

others.

Although several methods now exist for producing the

current dispersion curve of the fundamental mode in

microstrip, all of the analyses presented so far have the

fundamental shortcoming that they do not automatically

produce the mode patterns for the first few modes in a

computationally convenient form. In addition to the

difficulty alluded to above, all formulations that involve a

shielding box necessarily add waveguide-like modes that

may physically propagate in the real model, but which do

not exist on unshielded microstrip. Thus the use of these

results in circuit modeling still requires considerable

manual intervention by skilled hands. In the authors’

opinion, the definitive method for open microstrip is still

to be published.

V. WAVEGUIDE DISCONTINUITIES

The numerical methods appearing in recent years on the

analysis of waveguide dlscontinuities may be classified

into four broad categories: modal approximation tech-

niques; integral equation formulations; transverse dk-

continuity representations; and longitudinal discontinuity

representations. Each of these types of procedures is

based on a different technique for reducing waveguide

discontinuity y problems to one or two dimensions. It is

perhaps indicative of the state of the art that for wave-
guide discontinuity problems, not a single truly three-

dimensional solution has been published, although every

waveguide discontinuity y problem is inherently three

dimensional in nature.

The geometry with which we will be concerned is indi-

cated in Fig. 5, where the discontinuity y is entirely confined

between the planes a and b and the guiding structures are

J--’--#\
I

Fig. 5. T~ical two-port passive device or wave guide discon-
tinmty, consisting of a cavity enclosing an obstacle.

assumed to extend uniformly to infinity. The obstacle

may be either metal or dielectric and is very often confined

to either of the planes a or b. The solution of discontinuity y

problems involving the junction of three or more wave-

guides is obtained in essentially the same manner as the

two waveguide case and will not be treated separately here.

The mathematical statement of the problem depicted in

Fig. 5 is that the electric and magnetic fields must satisfy

the vector Helmholtz equation

(V’+ k’)fp = o +=120rti (6)

subject to the usual boundary conditions. As usual, the

first step in determining a network model for thk problem

is to establish a hypothetical guiding structure having

known and compatible physical characteristics. In the

present case, this hypothetical guiding structure may be

taken to be the two semi-infinite waveguide sections in

Fig. 6. Using the methods of Section III, the solution of

the two semi-infinite waveguides in Fig. 6(a) can be

determined. Thk solution is then subtracted from the

solution of the problem in Fig. 5, leaving only evanescent

fields in the neighborhood of the discontinuity. The im-

pedance matrix and the scattering parameters of the dis-

continuity are then calculated from the energy associated

with this residue. The following sections will indicate the

established procedures for solving the boundary value

problem in Fig. 5.

As stated in the Introduction, the locations of the

terminal planes are arbitrary. We could equally well have

chosen the hypothetical guiding structure in Fig. 6(b)

al

/

y

J \
\--4

I

(a)

(b)

Fig. 6. Two possible reference solutions for dkcontinuit y problem
of Fig. 5.
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for the field reference, this structure being of the same

overall length as the waveguide being modeled. The

evanescent residue obtained by subtracting the fields in

Fig. 6(b) from the fields in Fig. 5 is obviously different

from that obtained by subtracting the fields in Fig. 6(b)

from those in Fig. 5 and will result in a different charac-

terization of the discontinuity. Thus values of negative

capacitance and negative inductance can and often are ob-

tained for microwave discontinuities; no physical con-

tradiction arises, since these capacitances and inductances

are not absolute quantities, only values relative to some

hypothetical guiding structure.

VI. MODAL ANALYSIS

One of the best established numerical procedures for the

solution of the boundary value problem defined by (6)

is the modal analysis technique. This procedure is directly

applicable to structures containing planar discontinuities

only, although several discontinuity y planes may appear in

one problem. The idea behind the method is an extension

of the discussion given above for the replacement of a

waveguide discontinuity y problem by two corresponding

hypothetical semi-infinite uniform waveguides. Provided

that the discontinuity y is planar, as in the example in

Fig. 7(a), a hypothetical wave-guiding structure may be

defined with a region of definition exactly corresponding to

the region defined by the original problem, as illustrated in

Fig. 7(b). Now, it is well known that the modes in a uni-

form waveguide form a complete set of functions. There-

fore, the modes corresponding to the hypothetical wave-

guide structure may be used as basis functions to approxi-

mate the electromagnetic fields in waveguides containing

planar discontinuities. In fact, by using waveguide

modes as approximation functions, the Helmholtz equa-

tion (6) and the necessary boundary conditions are

satisfied everywhere except on the discontinuity y plane P.

Therefore, it is only necessary to enforce that the electric

and magnetic fields satisfy the appropriate boundary

conditions on the discontinuity y plane P.

In the early use of the modal analysis technique, the

I
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Fig. 7. (a) Transverse dkconthmit y at junction of two waveguides.
(b) Subdivkion of discontinuity region at dkcontinuity plane.

equality of the electric and magnetic fields on the two

sides of the plane was accomplished either by point

matching or by matching Fourier coefficients. Examples

of these types of analyses are the point matching and modal

approach used by Shockley et al. [35] to solve a linearly

tapered waveguide section problem and the Fourier

coefficient matching analysis of Lucas [36] regarding

waveguide planar offset problems. Experience indicates,

however, that both of these approaches can lead to diver-

gent results and therefore better methods of equating

fields across the discontinuity plane are required. One

successful approach to modal analysis was proposed inde-

pendently in three separate papers in 1967, by Clarricoats

and Slinn [37], Wexler [38], and Cole et al. [39]. In

these papers, the electric and magnetic fields are made to

satisfy the orthogonalit y condition

/
fiX@. dfi=O (7)

on the metal wall at P and across the interface between

waveguides. This corresponds to” the requirement that no

net power may be transferred into metal walls and that

the power leaving one guide equals the power entering the

other.

Quite a number of papers have appeared in the literature

since 1967 using the approach to solve particular wave-

guide discontinuity problems. In them, Bates [40] used

modal analysis to determine the behavior of junctions

between straight and curved waveguides; Huckle and

Masterman [41] treated the H-plane junction of a wave-

guide containing a row of rectangular ports; Schlude [42]

solved waveguide discontinuity y problems in which thin

irises occur; Krohne [43] studied the junction of two

circular waveguides, one of which contained a coaxial

dielectric rod; and McDonald [44] analyzed two identical

resonant cavities coupled by an aperature of arbitrary

thickness.

In addition to these papers, one further paper has

appeared since 1967, presenting a very general theory of

modal analysis based on the condition contained in (7).

This paper by Masterman and Clarricoats [45] is a

particularly elegant formulation incorporating both matrix

notation and an arbitrary source. The reader int crested in

furthering his knowledge of modal analysis should consult

this paper as a primary reference.

An alternative convergent approach to the matching of

fields on the plane P in modal analysis has recently been

proposed by Davies [46]. In this paper, the fields across

the discontinuity plane are equated by minimizing the

functional

(8)

where the subscripts 1 and 2 indicate the fields in the two

guides. The primary attraction of this formulation is that

the method is rigorously proved to be convergent in a well
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known norm, since it represents a particular case of classi-

cal least squares minimization.

Finally, before leaving the subject of modal analysis,

it is appropriate to add that the hypothetical waveguide

modes defined above are not the only possible functions to

use as approximating functions in modal analysis. The

work of Burshteyn [47] indicates that another useful set of

approximation functions in modal analysis are the fields

obtained by short circuiting the discontinuity y ends of the

equivalent hypothetical waveguides. Furthermore,

Knetsch [48] has formulated the modal analysis technique

in terms of an arbitrary set of orthogonal functions. There-

fore, one should not discount the possibility of using ap-

proximating functions other than the waveguide mode

functions in modal analysis.

VII. INTEGRAL EQUATION FORMULATION

The solution of waveguide discontinuity y problems using

integral equation methods has been established for a long

time. A summary of theoretical work based on these

methods is provided by Felsen and Kahn [49]. In recent

years, the use of the point matching method in the

solution of integral equations has become increasingly

popular, with a monograph on the subject by Barrington

[50] receiving widespread attention. It is regrettable that

the almost exclusive use of the point matching technique in

this monograph has often led to interchangeable use of

the terms point matching and moment method in microwave

literature, contrary to established usage in other fields of

science and technology [51].

In a typical integral equation formulation of a wave-

guide discontinuity y problem, an equation of the form

~,(r) = / 7f(r,r’) .j(r’) dr’ (9)

is determined where ~i is the incident electric field and ~

is the unknown current distribution around the dis-

continuity. ~(r) and ~,(r) are then approximated by

some easily evaluated functions such as polynomials or

trigonometric functions and a corresponding approxima-

tion of the kernel function ~ is made. The resulting matrix

equation yields an approximate value for the current

distribution on the discontinuity; from this distribution,

the value of the total electric field may be determined.

The application of this method to the integral equation

formulation of waveguide discontinuities has recently

been described by Thong [52], Wu and Chow [53],

and Chow and Wu [54]. [52] and [53] present a more or

less straightforward analysis, while [54] uses an unusual

combination of mixed basis functions to approximate the

current distribution. In this formulation, the current is
written as a sum of incident, scattered, and evanescent

terms:

J= J%+J,+J. (lo)

with incident and scattered terms being approximated by

the corresponding hypothetical waveguide currents. The

evanescent current is, however, approximated by pulse

functions defined over a finite region surrounding the dk-

continuity. Thus the method makes good use of the

approximating function space: functions with infinite

support approximate currents of infinite extent and func-

tions having local support approximate localized currents.

It should be pointed out with regard to the above

method that point matching may not be regarded as

testing with Dirac delta functions as is often asserted, e.g.,

by Thong [52] and by Chow and Wu [54]. Since the

Dirac delta function” is not square integrable, it is not an

element of the Hilbert space of square-summable functions

and may not be used for “testing.” In fact, it has been

shown by Oden [.55], that in addition to the Dirac delta

function, finite-dimensional data functions may be defined

and that they are equivalent to the conjugate basis func-

tions of interpolation polynomials. Therefore, the point

matching procedure is equivalent to testing with the

conjugate basis functions to interpolation polynomials.

Further, since it is also known that the optimal approxi-

mation of a function is made only when the expansion and

testing functions in the moment method are conjugates of

one another [56], this implies that the most accurate

point matching solution will be obtained only when the

expansion functions are interpolator.

Other difficulties are often encountered in the integral

equation formulation of iris problems, as evidenced by

recent papers by Mittra et al. [57] and by Lee et al. [58].

Both are concerned with the “relative convergence”

phenomenon. Relative convergence is a term used to

describe the existence of numerical instability in the

approximation of the integral equation by trigonometric

expansion functions. Although this phenomenon may be

explained analytical y, a consequence of the phenomenon

is large roundoff error in the solution of an ill-conditioned

matrix equation representing the kernel of the integral

equation [57]. Thus the cure for relative convergence

would appear to be the use of less oscillatory approxima-

tion functions, which would result in more stable matrix

equations.

With regard to the integral equation solution of wave-

guide discontinuity y problems, it should be mentioned that

an attempt has been made by Amitay and Galindo [59] to
determine an error estimate for the solution. Sadly,

however, the authors report that the usefulness of the

error bound is very limited.

VIII. TRANSVERSE AND LONGITUDINAL

REPRESENTATIONS

The remaining numerical methods for the solution of

waveguide discontinuity y problems reduce the three-

dimensional boundary value problem in (6) to a two-

dimensional one by the method of separation of variables.

In the case of a rectangular or circular wave-guiding

structure with a uniform discontinuity in the transverse

plane, this is accomplished by noting that the transverse
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field variation is sinusoidal, with the remaining variation

satisfying the two-dmensional Helmholtz equation. In

the case of a guiding structure with a gradually varying

discontinuity in the longitudinal direction, the separation

is performed by writing generalized telegraphist’s equa-

tions for the longitudinal variation of the fields in terms of

the waveguide cross-section modes.

An early numerical method for solving dkicontinuities

of uniform cross section in rectangular waveguides was

reported by Muilwyk and Davies [60]. They adapted an

experimental procedure proposed by Montgomery et al.

[61] for finding the scattering parameters of a discon-

tinuity by locating the nulls of its standing wave patterns.

As indicated by Fig. 8, in a rectangular waveguide con-

taining a discontinuity, a sequence of standing wave

patterns may be determined by solving the sequence of

field problems defined by taking each of the pairs of

planes as locations of field nulls. Muilwyk and Davies

solved the associated field problems using the finite-

difference method and reported obtaining good accuracy.

A deficiency in the method used by Muilwyk and Davies

is that the finite-cliff erence program used was limited to

determining only the dominant mode of the structure.

Hence, the arbitrarily imposed field null must be taken

very close to the discontinuity y for a given frequency.

Obviously, the use of higher order modes, which would

allow the field null closest to the dkcontinuity to be non-

planar, would result in higher accuracies. Since higher

order modes are readily produced by finite-element com-

puter programs, the possibility of using the above formula-

tion in conjunction with the finite-element method is very

attractive and awaits future investigation.

Using a similar reasoning, Silvester and Cermak [62]

have reported the development of a finite-difference

program to solve coaxial line discontinuities in the trans-

verse plane. An advantage of their formulation is that the

boundary conditions at the open ends are imposed by

boundary relaxation (a procedure available only for TEM

structures) and does not introduce the inaccuracy as-

sociated with an artificial boundary condition. However,

the finite-difference method has been largely superseded

by the finite-element method, and boundary relaxation by

the method of Silvester and Hsieh [6], so that present day

applications of the method should take advantage of the

newer more powerful computational techniques.

Another interesting paper making use of this type of

transverse discontinuity analysis is by Johns and Beurle

[63] who use a network analog method for solving the

transverse discontinuity y problem. An advantage of their

formulation is that the network analog approach facilitates

the evaluation of the discontinuity y impedance.

Lastly, we turn to the solution of tapered discontinuities

in waveguides in the longitudinal direction. The applica-

tion of numerical methods to this problem has been

reported by Davies et al. [64]. They use a closed-form

solution of the generalized telegraphist’s equations, given
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Fig. 8. Sequence of trial null planes for Muilwyk and Davies’
analysis of waveguide dkcontinuities.

in terms of the waveguide modes of the varying waveguide

cross section, to determine the impedance of the dis-

continuity y. The waveguide modes are computed numeri-

cally using the methods outlined in Section III.

IX. STRIPLINE DISCONTINUITIES AND PLANAR CIRCUITS

Discontinuities in microstrip, triplate, and other forms

of strip transmission structures have recently assumed

major importance in microwave engineering as a result of

changing technology. These discontinuities are usually

modeled by equivalent circuits containing one or a few

reactive elements, and occasionally short lengths of

idealized TEM line. The reactive element values in such

simple models can be found by direct experimental

measurement, and considerable amounts of measured data

have been gathered. The large variety of possible shapes

and materials, however, has rendered mathematical

modeling very desirable.

The simplest possible discontinuity in a stripline, the

open-circuited end, has probably attracted more attention

than any other. Troughton [65] has used experimentally

obtained data for multistub filters. Shortly thereafter,

Farrar and Adams [66] gave the first computed results.

The open-circuited line is modeled similarly to the coaxial

cable open circuit of Fig. 1, i.e., the terminal plane is taken

at the end of the strip and a single shunting capacitor is

assumed to represent the discontinuity adequately. The

essential problem of finding the value of this capacitor was

solved by Farrar and Adams by finding the capacitance

of a finite-length stripline. Such a finite-length section may

be modeled by an idealized TEM line connecting two end

capacitances; at very low frequencies the finite-line section

may be modeled as the shunt combination of three capaci-

tors, the two end-effect capacitors, and the capacitance

of the line section itself. By repeating computations for

ever longer line lengths and each time subtracting the

known electrostatic capacitance of the idealized line, a

value for the end capacitance is obtained. The process of
taking several lengths of line is necessary to ensure that

the charge distributions attributable to the two ends do not

interact. TO find the capacitance values each time the

integral equation governing the charge distribution of the

strip

/
V = G(P,Q)P(Q) d? (11)

is solved numerically using a two-dimensional staircase

approximation for the charge density, by a point matching
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method. In the above, G represents the Green’s function

appropriate to the problem; P and Q are the observation

and source points, respectively, and ~ is the electric

scalar potential. A similar solution, using polynomial

approximants and a projective solution technique, was

subsequently given by Benedek and Silvester [67].

Whichever way the integral equation is solved, a funda-

mental difficult y appears. If the finite length of strip is

made long enough to ensure that the end effects do not

interact, the line capacitance becomes large compared to

the end effect capacitance, so that numerical solutions of

extremely high accuracy are required to prevent dkastrous

loss of significant figures when the static line capacitance is

subtracted. This difficulty can be circumvented entirely by

formulating another integral equation in which the un-

known is not the total charge on the strip, but the excess

charge attributable to the end effect.

This integral equation is identical in form to the one

above, but the Green’s function is more complicated.

Such a formulation was used by Benedek and Silvester

[6S] to find equivalent circuits for line gaps and step

width changes, as well as for T junctions and crossings

[69].

Since there is no way of solving the integral equation for

charge distribution analytically, a variety of numerical

methods have been employed. In addition to the methods

already mentioned, finite-difference techniques and sub-

region matching methods have been employed [70]–[72].

Another possibility is that of using double Fourier trans-

forms on the integral equation and finding projective

solutions in the transform domain. This approach has been

pursued by Itoh et al. [73].

Although TEM approximations usually lead to accept-

able results at low frequencies, striplines containing several

dielectric media necessarily propagate hybrid waves.

When electrostatic solutions do not suffice, more accurate

representations of a microstrip discontinuity may be

made by allowing for inductive effects. A typical dis-

continuity will then he modeled as the combination of its

static capacitance and its high-frequency asymptotic

inductance. The current distribution in a conductor of

arbitrary shape is described [74] by an integral equation

similar to that governing the’ electrostatic charge dktribu-

tion, but involving the vector” current density, instead of

the scalar charge density. A solution of this problem has

recently been given by Gopinath and Silvester [73].

Microwave planar circuits may be regarded as gen-

eralized stripline junctions and are analogous to multiport

resonant cavities in waveguide technology. They are

readily fabricated in the” same process as striplines and

have therefore recently attracted attention. In analyzing

planar circuits, two approaches have been proposed. The

first treats the planar circuit as if it were a combination of

stripline junctions, while the second makes use of their

similarity to resonant cavities.

In the generalized stripline junction formulation of

Okoshi and Miyoshi [76], the basic planar circuit field

problem is expressed in terms of an integral equation that

is solved numerically. This yields a description of the

multiport network in terms of port impedance matrices for

each frequency of interest. A second stripline junction

formulation for planar circuits has” been presented by

Bianco and Ridella [77] who performed the analysis

using a modified subdomain method. SJnfortunately, their

work is largely restricted to rectangular networks since

they employed trigonometric functions as their basic

tools.

More recently, several workers have noted that a

resonant-cavity approach permitted a substantial reduc-

tion in computing time as well as allowing relatively simple

but comprehensible equivalent networks to be drawn. The

formulation given by HSU [78] has produced relatively

simple equivalent networks even in the multiport case,

while the approach of Silvester [79] has lead directly to

port admittance matrices. These formulations are closely
related and share the advantage that once the equivalent

network, or certain functions characterizing the planar

circuit, are known, only very simple arithmetic calculations

are required at each frequency Qf interest.

It will be noted from the above that little if any attempt

has so far been made to create synthesis programs for

stripline or planar network configurations. However,

since all of the analysis methods used rely on representing

the network geometry in terms of a finite set of parameters,

it seems highly probable that at least some direct synthesis

will be possible at an early date.

X. CONCLUSIONS

~umerical modeling and analysis methods have per-

mitted a much wider variety of passive microwave devices

to be characterized than could possibly be contemplated by

experimental methods alone. !AIost of the numerical tech-

niques currently employed are quit e new, and future

development can be expected to increase their scope and

power. For the present, the majority of modeling tech-

niques are restricted to two-dimensional problems and

therefore find direct application only wherever the device

to be analyzed is uniform in one direction, so that the

inherently three-dimensional field problems associated

with the device can be reduced to two-dimensional form

by a partial separation of the variables.

The present state of the numerical modeling art can

best be summarized by stating that characterizations may

be obtained for a large class of devices with accuracies at

least adequate for most engineering purposes. However,

the device optimization problem, which presumably

requires repeated analysis, has as yet hardly been touched.

Success in this direction will require considerable future
work in two areas. First, further improvement in numerical

methods is required to reduce the cost of each individual

analysis to a lower level. Second, and perhaps more im-

portant, substantial new work is required in turning such
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geometric variables as shape into numerical quantities,

both to facilitate man–machine communication and to

permit design optimization algorithms to be constructed

in an efficient manner.
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